Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599281

ABSTRACT

INTRODUCTION: Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES: This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS: Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS: Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS: Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.

2.
Theriogenology ; 222: 22-30, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615433

ABSTRACT

Primordial germ cells (PGCs) are the precursors of germ cells and play a crucial role in germline transmission. In chickens, PGCs can be cultured in vitro while maintaining their germline stem cell characteristics. The Deleted in Azoospermia-Like (DAZL) gene, which is highly expressed in PGCs, is essential for germ cell development. Here, through gene knockout experiments, we discovered that the loss of DAZL expression in chicken PGCs led to decreased proliferation and survival. By next employed techniques such as RIP-seq (RNA Binding Protein Immunoprecipitation) and Co-IP-MS/MS (Co-immunoprecipitation Mass Spectrometry), we identified genes directly regulated by DAZL or cooperating with DAZL at the transcriptomic and proteomic levels. DAZL was found to control genes related to germline development, pluripotency, and cell proliferation in PGCs. Additionally, we observed a significant overlap between RNAs and proteins that interact with both DAZL and DDX4, indicating their cooperation in the gene regulation network in chicken PGCs. Our research provides valuable insights into the function of the DAZL gene in germline cells.


Subject(s)
Cell Proliferation , Chickens , DEAD-box RNA Helicases , Germ Cells , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Chickens/genetics , Germ Cells/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation , Gene Expression Regulation, Developmental
3.
Int Immunopharmacol ; 132: 111970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608472

ABSTRACT

OBJECTIVES: As antibiotics become more prevalent, accuracy and safety are critical. Moxifloxacin (MXF) have been reported to have immunomodulatory effects on a variety of immune cells and even anti-proliferative and pro-apoptotic effects, but the mechanism of action is not fully clear. METHODS: Peripheral blood mononuclear cells (PBMC) from experimental groups of healthy adults (n = 3) were treated with MXF (10ug/ml) in vitro for 24 h. Single-cell sequencing was performed to investigate differences in the response of each immune cell to MXF. Flow cytometry determined differential gene expression in subsets of most damaged NK cells. Pseudo-time analysis identified drivers that influence MXF-stimulated cell differentiation. Detection of mitochondrial DNA and its involvement in the mitochondrial respiratory chain pathway clarifies the origin of MXF-induced stress injury. RESULTS: Moxifloxacin-environmental NK cells are markedly reduced: a new subset of NK cells emerges, and immediate-early-response genes in this subset indicate the presence of an early activation response. The inhibitory receptor-dominant subset shows enhanced activation, leading to increased expression of cytokines and chemokines. The near-mature subset showed greater cytotoxicity and the most pronounced cellular damage. CD56bright cells responded by antagonizing the regulation of activation and inhibitory signals, demonstrating a strong cleavage capacity. The severe depletion of mitochondrial genes was focused on apoptosis induced by the mitochondrial respiratory chain complex. CONCLUSION: NK cells exhibit heightened sensitivity to the MXF environment. Different NK subsets upregulate the expression of cytokines and chemokines through different activation pathways. Concurrently, MXF induces impairment of the mitochondrial oxidative phosphorylation system, culminating in apoptosis.


Subject(s)
Apoptosis , DNA, Mitochondrial , Killer Cells, Natural , Moxifloxacin , Moxifloxacin/pharmacology , Humans , Apoptosis/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Adult , Cells, Cultured , Cytokines/metabolism , Anti-Bacterial Agents/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Mitochondria/drug effects , Mitochondria/metabolism , Male
4.
Respir Res ; 25(1): 108, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419044

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate, and there is an urgent need for more effective therapies. Fibroblast growth factor 18 (FGF18) has potent anti-inflammatory properties and therefore has become a focus of research for the treatment of lung injury. However, the precise role of FGF18 in the pathological process of ALI and the underlying mechanisms have not been fully elucidated. METHODS: A mouse model of ALI and human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS) was established in vivo and in vitro. AAV-FGF18 and FGF18 proteins were used in C57BL/6J mice and HUVEC, respectively. Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and p65 protein levels were determined by western blotting or immunofluorescent staining. Afterward, related inhibitors were used to explore the potential mechanism by which FGF18 relieves inflammation. RESULTS: In this study, we found that FGF18 was significantly upregulated in LPS-induced ALI mouse lung tissues and LPS-stimulated HUVECs. Furthermore, our studies demonstrated that overexpressing FGF18 in the lung or HUVEC could significantly alleviate LPS-induced lung injury and inhibit vascular leakage. CONCLUSIONS: Mechanically, FGF18 treatment dramatically inhibited the NF-κB signaling pathway both in vivo and in vitro. In conclusion, these results indicate that FGF18 attenuates lung injury, at least partially, via the NF-κB signaling pathway and therefore may be a potential therapeutic target for ALI.


Subject(s)
Acute Lung Injury , Fibroblast Growth Factors , Sepsis , Mice , Humans , Animals , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Acute Lung Injury/metabolism , Lung/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Sepsis/metabolism
5.
FASEB J ; 38(2): e23410, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193545

ABSTRACT

Skin wound healing is a complex and organized biological process, and the dermal fibroblasts play a crucial role. α-Catenin is known to be involved in regulating various cellular signals, and its role in wound healing remains unclear. Here, we have identified the pivotal role of the α-catenin/FAK/YAP signaling axis in the proliferation and migration of dermal fibroblasts, which contributes to the process of skin wound healing. Briefly, when α-catenin was knocked down specifically in dermal fibroblasts, the wound healing rate is significantly delayed. Moreover, interfering with α-catenin can impede the proliferation and migration of dermal fibroblasts both in vitro and in vivo. Mechanistically, the overexpression of α-catenin upregulates the nuclear accumulation of YAP and transcription of downstream target genes, resulting in enhanced the proliferation and migration of dermal fibroblasts. Furthermore, the FAK Tyr397 phosphorylation inhibitor blocked the promoting effects of α-catenin on YAP activation. Importantly, the continuous phosphorylation mutation of FAK Tyr397 reversed the retardatory effects of α-catenin knockdown on wound healing, by increasing the vitality of fibroblasts. Likewise, α-catenin/FAK was validated as a therapeutic target for wound healing in the db/db chronic trauma model. In summary, our findings have revealed a novel mechanism by which α-catenin facilitates the function of fibroblasts through the activity of the FAK/YAP signaling axis. These findings define a promising therapeutic strategy for accelerating the wound healing process.


Subject(s)
Fibroblasts , Wound Healing , alpha Catenin/genetics , Mutation , Cell Proliferation
6.
FASEB J ; 37(9): e23135, 2023 09.
Article in English | MEDLINE | ID: mdl-37594910

ABSTRACT

Diabetes is a chronic disease characterized by perturbed glucose and lipid metabolism, resulting in high blood glucose levels. Many complications induced by endothelial dysfunction can cause disability and even death of diabetic patients. Here, we found that the protein level of casein kinase 2α (CK2α) was increased in the endothelium of mice with type I diabetes (T1D) induced by streptozotocin (STZ) injection. Although a potential correlation between the protein level of CK2α and endothelial dysfunction in diabetes was established, the contribution of CK2α to the progression of endothelial dysfunction in diabetes remained largely unknown. By using CX4945 (a selective CK2α antagonist) and Si-csnk2a1 (small interfering RNA targeting CK2α), we found that inhibition of CK2α accelerated skin wound healing in T1D mice by promoting proliferation of endothelial cells. Administration of CX4945 or Si-csnk2a1 rescued the impaired Hedgehog signaling pathway in high glucose-treated human umbilical vein endothelial cells (HUVECs). Exploration of the underlying molecular mechanism revealed that the protective effect of CK2α inhibition on angiogenesis, which contributes to skin wound healing in diabetic mice, was blocked by administration of GANT61 (an inhibitor targeting the Hedgehog signaling pathway). Our findings establish CK2α as a regulator of endothelial dysfunction in diabetes and demonstrate that inhibition of CK2α accelerates skin wound healing in T1D mice by promoting endothelial cell proliferation via the Hedgehog signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Humans , Animals , Mice , Hedgehog Proteins , Casein Kinase II , Cell Proliferation , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells , Wound Healing
7.
Sensors (Basel) ; 23(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679750

ABSTRACT

(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera's performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.


Subject(s)
Gamma Cameras , Metals, Heavy , Equipment Design , Diagnostic Imaging
8.
Poult Sci ; 102(3): 102377, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586387

ABSTRACT

In hens, egg production depends on the development of germ cells in the ovary. Germ cells are established before birth, and their number gradually decreases during their lifespan. Therefore, it is essential to determine the time points of massive germ cell loss and the underlying mechanism. In this study, a gene-edited chicken with mCherry fluorescence specifically expressed in the germline was generated by the integration of the mCherry gene into the 3'-end of the DAZL locus, which facilitated the isolation of germ cells from the gonads of DAZL-mCherry embryos or chicks and quantification using flow cytometry based on the observation of red fluorescence. The results demonstrated the dynamics of germ cell development from embryos at 17 d of hatching (dh) to chickens at 7 d post-hatch (dph) and revealed a substantial loss of germ cells in the late embryonic stage (18 -19 dh) and post-hatch period (2 -3 dph). Additionally, the number of germ cells in DAZL × Guangxi Ma chicken was significantly higher than that in DAZL × Lohmann Pink chicken at 19 dh and 3 dph (P < 0.05). Furthermore, the numbers of germ cells positively correlated with the body weight in DAZL × Lohmann Pink chicken. In conclusion, our results showed the dynamics of germ cell development in chicken ovaries during peri-hatch periods and indicated the time point of substantial germ cell loss. The results provide evidence for further exploration of the underlying mechanism and serve as a reference for chicken breeding and management.


Subject(s)
Chickens , Gene Editing , Animals , Female , Chickens/genetics , Gene Editing/veterinary , China , Gonads , Germ Cells
9.
Adv Healthc Mater ; 12(2): e2201220, 2023 01.
Article in English | MEDLINE | ID: mdl-36330558

ABSTRACT

Hierarchical vasculature reconstruction is fundamental for tissue regeneration. The regeneration of functional vascular network requires a proper directional guidance, especially in case of large-size defects. To provide the "running track" for vasculature, a leaf-vein mimetic membrane using soft and elastic poly(lactide-co-propylene glycol-co-lactide) dimethacrylate is developed. Engraved with an interconnected and perfusable leaf-vein micropattern, the membrane can guide human umbilical vein endothelial cells (HUVECs) to form vasculature in vitro. In particular, the "running track" upregulates the angiogenesis-related gene expression and promotes the HUVECs to differentiate into tip cells and stalk cells via tuning vascular endothelial growth factor receptor 2 signaling transduction. As a proof of concept, its revascularization capability using a rat calvarial defect model in vivo is evaluated. The in vivo results demonstrate that the leaf-vein engraved membrane accelerates the formation and maturation of vasculature, leading to a hierarchical blood vessel network. With the superior pro-vasculature property, it is believed that the leaf-vein engraved membrane is not only an ideal candidate for the reconstruction of calvarial vasculature but also a promising solution for more complicated vasculature reconstruction, such as muscle, skin, and heart.


Subject(s)
Biomimetic Materials , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Veins , Animals , Humans , Rats , Human Umbilical Vein Endothelial Cells/metabolism , Plant Leaves , Wound Healing , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Vascular Endothelial Growth Factor Receptor-2/metabolism , Skull/metabolism , Skull/pathology , Polyesters/chemistry , Polyesters/therapeutic use
11.
Poult Sci ; 101(12): 102174, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36240636

ABSTRACT

Advanced animal reproductive and breeding biotechnology has made it possible to alter traits or create new genetic resources by the direct knock-in or knock-out of target genes. Base editing technology can achieve single-base mutations without double-stranded DNA breaks, and is a promising tool for use in the genetic modification and breeding of livestock. However, the application of base editors (BEs) in chicken has not been optimized. We evaluated the efficacy of BE4max in chicken somatic cells (DF-1). The key element of BE4max, cytosine deaminase (APOBEC), was optimized for chicken. The base editing efficiency of the optimized chBE4max editor, compared with the original BE4max editor, was improved by 10.4% ± 4.6. By inhibiting the expression of the uracil DNA glycosylase-related gene methyl binding domain protein 4 (MBD4) by siRNA in chicken DF-1 cells, the editing efficiency was enhanced by 4.43% ± 1.4 compared to the control. These results suggest that this editor may have applications in poultry breeding studies.


Subject(s)
CRISPR-Cas Systems , Chickens , Animals , Chickens/genetics , Gene Editing/veterinary , Gene Editing/methods , Mutation
12.
Proc Natl Acad Sci U S A ; 119(41): e2206684119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191194

ABSTRACT

Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent ß-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.


Subject(s)
Osteogenesis , Tissue Scaffolds , Animals , Bone Regeneration , Cell Differentiation , Humans , Mice , Porosity , Printing, Three-Dimensional , Rabbits , Tissue Engineering/methods , Tissue Scaffolds/chemistry
13.
Appl Radiat Isot ; 186: 110256, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35533606

ABSTRACT

In single-photon emission computed tomography (SPECT), a micro-sized 99mTc source is routinely used for performance measurement, geometry calibration, and system matrix generation. Therefore, a micro-sized source is critical in nuclear instrument production and quality control. Standard methods can only produce a point source with a large size and low total activity, as they are limited by the concentration of the 99mTc solution. The absorption of 99mTc on ion exchange resins has been used; however, few studies have quantitatively evaluated the absorption process and optimized the source activity. This paper proposes a procedure for producing a micro-sized 99mTc resin source with a super-high concentration, as well as a method for the fast measurement of the point source time-activity curve (TAC). Experiments on two resin point sources with diameters of 0.681 mm and 0.326 mm were carried out. Two semi-empirical models, including the first kinetic model and the pseudo-second-order rate equation model, were used to fit TACs. The results show the first kinetic model fit better, which suggests an acquisition time of 2-4 h is needed for optimization. The verification experiment demonstrates a resin point source with a diameter of 0.35 mm and total activity of 10.6 mCi (i.e., 59.1 Ci/mL concentration) was produced.


Subject(s)
Ion Exchange Resins , Tomography, Emission-Computed, Single-Photon , Calibration , Tomography, Emission-Computed, Single-Photon/methods
14.
Small ; 18(36): e2200314, 2022 09.
Article in English | MEDLINE | ID: mdl-35261154

ABSTRACT

Electrosprayed microspheres for bone regeneration are conventionally restricted by the lack of osteogenic modulation for both encapsulated stem cells and surrounding cells at the defect site. Here, sodium alginate microspheres encapsulating L-arginine doped hydroxyapatite nanoparticles (Arg/HA NPs) and bone mesenchymal stem cells (BMSCs) as regeneration-enhancer-element reservoirs (Arg/HA-SA@BMSC) for bone healing are electrosprayed. The Arg/HA NPs serve as a container of L-arginine and Ca2+ and the BMSCs inside the microspheres metabolize the released L-arginine into bioactive gas nitric oxide (NO) in the presence of Ca2+ to activate the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway. Meanwhile, the generated NO diffuses out of the microspheres together with the Ca2+ and L-arginine as exterior enhancers to promote the osteogenesis-angiogenesis coupling of surrounding BMSCs and endothelial cells (ECs) at the bone defect site, generating an internal/external modulation loop between the encapsulated cells and surrounding native cells. It is demonstrated that such regeneration-enhancer-element reservoirs could effectively increase the bone tissue formation and neovasculature using rat calvarial defect models. It is envisioned that the microsphere system could streamline vascularized bone regeneration therapy as a high throughput, minimally invasive yet highly effective strategy to accelerate bone healing.


Subject(s)
Endothelial Cells , Osteogenesis , Animals , Arginine/pharmacology , Bone Regeneration , Cell Differentiation , Durapatite , Microspheres , Nitric Oxide , Rats , Tissue Scaffolds
15.
Mar Environ Res ; 170: 105447, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34438216

ABSTRACT

The toxicity of heavy metals to coastal organisms can be modulated by changes in pH due to progressive ocean acidification (OA). We investigated the combined impacts of copper and OA on different stages of the green macroalga Ulva linza, which is widely distributed in coastal waters, by growing the alga under the addition of Cu (control, 0.125 (medium, MCu), and 0.25 (high) µM, HCu) and elevated pCO2 of 1,000 µatm, predicted in the context of global change. The relative growth rates decreased significantly in both juvenile and adult thalli at HCu under OA conditions. The net photosynthetic and respiration rates, as well as the relative electron transfer rates for the adult thalli, also decreased under the combined impacts of HCu and OA, although no significant changes in the contents of photosynthetic pigments were detected. Our results suggest that Cu and OA act synergistically to reduce the growth and photosynthetic performance of U. linza, potentially prolonging its life cycle.


Subject(s)
Ulva , Carbon Dioxide , Copper/toxicity , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
16.
Small ; 17(14): e2006598, 2021 04.
Article in English | MEDLINE | ID: mdl-33705605

ABSTRACT

Current periosteal grafts have limitations related to low mechanical strength, tissue adhesiveness, and poor osteogenesis and angiogenesis potential. Here, a periosteum mimicking bone aid (PMBA) with similar structure and function to natural periosteum is developed by electrospinning photocrosslinkable methacrylated gelatin (GelMA), l-arginine-based unsaturated poly(ester amide) (Arg-UPEA), and methacrylated hydroxyapatite nanoparticles (nHAMA). Such combination of materials enhances the material mechanical strength, favors the tissue adhesion, and guarantees the sustained activation of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway, with well-coordinated osteogenic-angiogenic coupling effect for accelerated bone regeneration. This work presents a proof-of-concept demonstration of thoroughly considering the progression of implant biomaterials: that is, the initial material components (i.e., GelMA, Arg-UPEA, and nHAMA) equip the scaffold with suitable structure and function, while its degradation products (i.e., Ca2+ and l-arginine) are involved in long-term mediation of physiological activities. It is envisioned that the strategy will inspire the design of high-performance bioscaffolds toward bone and periosteum tissue engineering.


Subject(s)
Osteogenesis , Periosteum , Adhesives , Biomimetics , Bone Regeneration , Tissue Engineering , Tissue Scaffolds
17.
Acta Biomater ; 124: 15-32, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33508510

ABSTRACT

Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.


Subject(s)
Quality of Life , Tendons , Humans , Hydrogels , Technology , Tendons/pathology , Tissue Adhesions/pathology , Tissue Adhesions/prevention & control
18.
Cell Biol Toxicol ; 37(1): 85-96, 2021 02.
Article in English | MEDLINE | ID: mdl-33099657

ABSTRACT

Synovial mesenchymal stem cells (SMSCs) have the potential to attenuate osteoarthritis (OA)-induced injury. The role and mechanism of SMSC-derived exosomes (SMSC-Exos), pivotal paracrine factors of stem cells, in OA-associated injury remain unclear. We aimed to confirm the effect of SMSC-Exos with specific modifications on OA-induced damage and to investigate the potential molecular mechanisms. Exosomes derived from miR-155-5p-overexpressing SMSCs (SMSC-155-5p-Exos) and SMSCs (SMSC-Exos) were isolated and characterized. CCK-8, Transwell, and Western blot analyses were used to detect proliferation, migration, extracellular matrix (ECM) secretion, and apoptosis of osteoarthritic chondrocytes. The therapeutic effect of exosomes in a mouse model of OA was examined using immunohistochemical staining and OARSI scores. SPSS 17.0 and GraphPad software were used for all statistical analyses in this study. The SMSC-Exos enhanced the proliferation and migration and inhibited the apoptosis of osteoarthritic chondrocytes but had no effect on ECM secretion. The miR-155-5p-overexpressing exosomes showed common characteristics of exosomes in vitro and further promoted ECM secretion by targeting Runx2. Thus, the SMSC-155-5p-Exos promoted proliferation and migration, suppressed apoptosis and enhanced ECM secretion of osteoarthritic chondrocytes, and effectively prevented OA in a mouse model. In addition, overexpression of Runx2 partially reversed the effect of the SMSC-155-5p-Exos on osteoarthritic chondrocytes. Given the insufficient effect of the SMSC-Exos on the ECM secretion of osteoarthritic chondrocytes, we modified the SMSM-Exos and demonstrated that the SMSC-155-5p-Exos could prevent OA. Exosomes derived from modified SMSCs may be a new treatment strategy to prevent OA. Graphical abstract.


Subject(s)
Apoptosis , Chondrocytes/pathology , Exosomes/metabolism , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteoarthritis/prevention & control , Synovial Membrane/pathology , Animals , Base Sequence , Cell Movement , Cell Proliferation , Chondrocytes/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Exosomes/ultrastructure , Gene Expression Profiling , Humans , Mice, Inbred BALB C , MicroRNAs/genetics , Osteoarthritis/pathology
19.
Biomaterials ; 263: 120378, 2020 12.
Article in English | MEDLINE | ID: mdl-32932140

ABSTRACT

3D printing is known as a cost-effective technique that shows huge potential in fabrication of graft substitutes for bone tissue regeneration. However, the tradeoff between 3D printability, mechanical strength and bioactivity of the printed materials (i.e., inks) remains a challenge. In this work, we present a novel photocrosslinkable nanocomposite ink composed of tri-block poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PmLnDMA, m and n respectively represent the unit length of propylene glycol and lactide) and hydroxyethyl methacrylate (HEMA)-functionalized hydroxyapatite nanoparticles (nHAMA). The reactive HEMA-conjugated nHAMA, is designed to covalently crosslink with the surrounding polymer matrix to further increase the interfacial bonding between them. We find that the nHAMA can rapidly interact with PmLnDMA upon light exposure within 140 s and form an inorganic-organic co-crosslinked nanocomposite network, further enhancing the nanofiller-matrix interfacial compatibility. Notably, our nanocomposites possess significantly improved mechanical performances compared to the polymer, with compressive modulus increasing by nearly 10 times (from ⁓40 to ⁓400 MPa). Moreover, thanks to the low exothermic heat generation (<37 °C) during photocrosslinking, our nanocomposite ink enables facile encapsulation and long-term release of heat-labile biomolecules like bone morphogenic protein-2 (BMP-2). Furthermore, it demonstrates a readily tunable rheological property, wettability, degradation, and printability as a 3D bone scaffold. Together with its superior osteogenic ability both in vitro and in vivo, we envision that our nanocomposite ink holds great promise in 3D printing of bone grafts.


Subject(s)
Ink , Nanocomposites , Durapatite , Printing, Three-Dimensional , Tissue Scaffolds
20.
J Biol Eng ; 13: 90, 2019.
Article in English | MEDLINE | ID: mdl-31832093

ABSTRACT

BACKGROUND: The production of transgenic chicken cells holds great promise for several diverse areas, including developmental biology and biomedical research. To this end, site-specific gene integration has been an attractive strategy for generating transgenic chicken cell lines and has been successfully adopted for inserting desired genes and regulating specific gene expression patterns. However, optimization of this method is essential for improving the efficiency of genome modification in this species. RESULTS: Here we compare gene knock-in methods based on homology-independent targeted integration (HITI), homology-directed repair (HDR) and homology mediated end joining (HMEJ) coupled with a clustered regularly interspaced short palindromic repeat associated protein 9 (CRISPR/Cas9) gene editing system in chicken DF-1 cells and primordial germ cells (PGCs). HMEJ was found to be a robust and efficient method for gene knock-in in chicken PGCs. Using this method, we successfully labeled the germ cell specific gene DAZL and the pluripotency-related gene Pou5f3 in chicken PGCs through the insertion of a fluorescent protein in the frame at the 3' end of the gene, allowing us to track cell migration in the embryonic gonad. HMEJ strategy was also successfully used in Ovalbumin, which accounts for more than 60% of proteins in chicken eggs, suggested its good promise for the mass production of protein with pharmaceutical importance using the chicken oviduct system. CONCLUSIONS: Taken together, these results demonstrate that HMEJ efficiently mediates site-specific gene integration in chicken PGCs, which holds great potential for the biopharmaceutical engineering of chicken cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...